User View of Fermilab Batch Computing

Fermilab Batch Computing is implemented in several different workflows. Figures 1 and 2
diagram three methods for connecting experiment jobs with compute resources: CMS
workflows, workflows, and . The simplest of these models is the direct
submission wherein an experiment such as DES submits jobs to compute elements by issuing

commands directly. This method consists of user commands connecting directly with
a single compute element and is therefore limited to that single cluster (in this case the Fermi
GP Grid cluster). It requires that experimenters learn HTCondor commands and actively avoid
potential pitfalls. establishes the order in which jobs will start and matches job
requirements (memory, CPUs, disk) to available computing resources. Within this
implementation there is no ability to dynamically go beyond the confines of the dedicated
compute cluster.

For almost all experiments with distributed-computing needs (CMS, NOvA, MicroBooNE, DUNE,
etc.), additional layers are introduced between the experiment and the distributed resource pool.
The purpose of the additional layers is to automate common tasks (data handling, resource
provisioning and partitioning, authentication, etc.), allow service providers to negotiate with
numerous compute elements behind the scenes using GlideinWMS, and sanitize the interaction
with the . The diagram shows three custom workflow management systems
between the user and the HTCondor pool: , WMAgent, and CRAB.

WMAgent (production) and CRAB (end users) are utilized by CMS as a layer of abstraction that
communicates with the performing tasks such as authentication, data discovery,
and automating the configuration files for resource provisioning with the pool. At the
next layer, GlideinWMS allows for the dynamic incorporation of additional compute resources
(e.g. and ,) and the configuration of those compute
elements to accept jobs from the HTCondor pool.

The workflow is designed as a layer of abstraction similar to WMAgent and CRAB that
also conglomerates the submissions from more than 20 VOs into a single service and workflow.
performs automatic authentication, file transfers, configuration of resource

provisioning requests, and integration of data handling interfaces (SAM) and tools (ifdh). The

workflow also leverages GlideinWMS to dynamically provision a diverse set of distributed
compute resources to the HTCondor pool-from-traditional-grid-sites;-HPE-clusters-along-with
resources from paid clouds such as AWS and community clouds. The FIFE Workflow requires
greater flexibility in order to adapt to some of the specific requirements of each VO.

The Fermilab HEPCloud Facility extends the concept of delegated resource provisioning by
granting the site additional capabilities to acquire resources on behalf of experiments. The
design calls for the establishment of resource provisioning policies and a decision engine that
will implement these policies. The Fermilab HEPCloud Facility will evaluate supply, demand,

capability, and cost of resources to determine which resources will be allocated for an

experiment’s computing needs.

How the system looks today - Spring 2016

FIFE Condor
Pool

WMAgent

CMS Global
Condor
Pool

/AN

| GlideinWMS

FNAL
GeneraPurpose
Grid

HEPCloud
(AWS)

ﬁla

KEY
Virtual Orgs

HTCondor
GlideinWMS
CMS Custom

Workflow

Non FNAL FARM

Figure 1. The diagram shows three of the batch computing workflows currently used at

Fermilab.

How the system is proposed - winter 2016

HEP Cloud
Condor Pool

[GlideinWMS

FNAL
GeneraPurpose
Grid

- [

KEY

HTCondor
GlideinWMS
CMS Custom

Workflow

Non FNAL FARM

Figure 2. The diagram shows the proposed reconfiguration of batch computing to take
advantage of the HEPCloud soon to be implemented. HEPCloud will include a resource
provisioning policy and decision engine to incorporate additional resources based on need.

